Namespaces
Variants

std:: legendre, std:: legendref, std:: legendrel

From cppreference.net
double legendre ( unsigned int n, double x ) ;

double legendre ( unsigned int n, float x ) ;
double legendre ( unsigned int n, long double x ) ;
float legendref ( unsigned int n, float x ) ;

long double legendrel ( unsigned int n, long double x ) ;
(1)
double legendre ( unsigned int n, IntegralType x ) ;
(2)
1) Вычисляет неприсоединённые полиномы Лежандра степени n и аргумента x .
2) Набор перегруженных функций или шаблон функции, принимающий аргумент любого целочисленного типа . Эквивалентно (1) после приведения аргумента к double .

Как и все специальные функции, legendre гарантированно доступна в <cmath> только если __STDCPP_MATH_SPEC_FUNCS__ определено реализацией со значением не менее 201003L и если пользователь определяет __STDCPP_WANT_MATH_SPEC_FUNCS__ до включения любых заголовков стандартной библиотеки.

Содержание

Параметры

n - степень полинома
x - аргумент, значение типа с плавающей точкой или целочисленного типа

Возвращаемое значение

If no errors occur, value of the order- n unassociated Legendre polynomial of x , that is
1
2 n
n!
d n
dx n
(x 2
- 1) n
, is returned.

Обработка ошибок

Ошибки могут сообщаться, как указано в math_errhandling .

  • Если аргумент равен NaN, возвращается NaN и ошибка домена не сообщается.
  • Функция не обязана быть определена для |x| > 1 .
  • Если n больше или равен 128, поведение определяется реализацией.

Примечания

Реализации, которые не поддерживают TR 29124, но поддерживают TR 19768, предоставляют эту функцию в заголовочном файле tr1/cmath и пространстве имён std::tr1 .

Реализация этой функции также доступна в boost.math .

Первые несколько полиномов Лежандра:

  • legendre(0, x) = 1 .
  • legendre(1, x) = x .
  • legendre(2, x) =
    1
    2
    (3x 2
    - 1)
    .
  • legendre(3, x) =
    1
    2
    (5x 3
    - 3x)
    .
  • legendre(4, x) =
    1
    8
    (35x 4
    - 30x 2
    + 3)
    .

Пример

(работает как показано с gcc 6.0)

#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
double P3(double x)
{
    return 0.5 * (5 * std::pow(x, 3) - 3 * x);
}
double P4(double x)
{
    return 0.125 * (35 * std::pow(x, 4) - 30 * x * x + 3);
}
int main()
{
    // проверки
    std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n'
              << std::legendre(4, 0.25) << '=' << P4(0.25) << '\n';
}

Вывод:

-0.335938=-0.335938
0.157715=0.157715

Смотрите также

Полиномы Лагерра
(функция)
Полиномы Эрмита
(функция)

Внешние ссылки

Weisstein, Eric W. "Legendre Polynomial." From MathWorld — A Wolfram Web Resource.